Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 74: 123-130, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30048878

RESUMO

Tissue hypoxia is a condition that induces calcium influx into living cells. Calcium is a major player in maintaining cell signaling and homeostasis, and mediates the regulation of gene transcription and cell proliferation; however, acute and aggressive calcium influx induced by hypoxia eventually leads to programmed cell death. The blind mole rat, Spalax, is a wild-spread burrowing mammal adapted to hypoxic environments. A tyrosine -to- phenylalanine (F481 in Spalax corresponding to Y485 in human full-length receptor; Y460 in human mature form) substitution is found in the erythropoietin receptor of Spalax and other species, which was previously shown to be strongly involved in the calcium channels activation and subsequent calcium influx. The current work aimed to explore the dynamics of calcium transport across Spalax nonhematopoietic cells' membrane compared to above ground rat and mouse, and the role of the erythropoietin receptor of Spalax in the regulation of calcium influx under hypoxia. We show here that Epo-induced calcium influx in HEK293 cells transfected with Spalax EpoR is significantly lower than that of mouse; in hypoxia this difference was even more pronounced. Western blots confirmed a significant increase of Erk phosphorylation after stimulation with erythropoietin under hypoxia in cells transfected with mouse full length erythropoietin receptor compared to Spalax. Native primary fibroblasts showed lower cytosolic calcium concentrations in Spalax cells when compared to those of rats under normoxic and hypoxic conditions. Spalax EpoR appears to play an important role in preventing deleterious consequences of hypoxia and maintaining cellular homeostasis under stress.


Assuntos
Cálcio/metabolismo , Fibroblastos/metabolismo , Receptores da Eritropoetina/fisiologia , Spalax/metabolismo , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Ratos-Toupeira , Ratos
2.
Stem Cells ; 36(10): 1630-1642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004601

RESUMO

Adipose-derived stem cells (ADSCs) are recruited by cancer cells from the adjacent tissue, and they become an integral part of the tumor microenvironment. Here, we report that ADSCs from the long-living, tumor-resistant blind mole rat, Spalax, have a low ability to migrate toward cancer cells compared with cells from its Rattus counterpart. Tracking 5-ethynyl-2'-deoxyuridine (EdU)-labeled ADSCs, introduced to tumor-bearing nude mice, toward the xenografts, we found that rat ADSCs intensively migrated and penetrated the tumors, whereas only a few Spalax ADSCs reached the tumors. Moreover, rat ADSCs, but not Spalax ADSCs, acquired endothelial-like phenotype and incorporated in the intratumoral reticular structure resembling a vasculature. Likewise, endothelial-like cells differentiated from Spalax and rat ADSCs could form capillary-like structures; however, the tube densities were higher in rat-derived cells. Using time-lapse microscopy, in vitro wound-healing, and transwell migration assays, we demonstrated the impaired motility and low polarization ability of Spalax ADSCs. To assess whether the phosphorylated status of myosin light chain (MLC) is involved in the decreased motility of Spalax ADSCs, we inhibited MLC phosphorylation by blocking of Rho-kinase (ROCK). Inhibition of ROCK resulted in the suppression of MLC phosphorylation, acquisition of actin polarization, and activation of motility and migration of Spalax ADSCs. We propose that reduced ADSCs migration to cancer and poor intratumoral angiogenesis play a role in Spalax's cancer resistance. Learning more about the molecular strategy of noncancerous cells in Spalax to resist oncogenic stimuli and maintain a nonpermissive tumor milieu may lead us to developing new cancer-preventive strategy in humans. Stem Cells 2018;36:1630-1642.


Assuntos
Tecido Adiposo/metabolismo , Neoplasias/terapia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Ratos-Toupeira , Neoplasias/patologia , Microambiente Tumoral
3.
Front Immunol ; 9: 768, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922274

RESUMO

Different subtypes of macrophages have been shown to participate in different stages of inflammation and tissue repair. In the late stage of tissue repair, the macrophages, following their engulfment of apoptotic neutrophils, acquire a new phenotype termed alternatively activated macrophages. These macrophages produce growth factors, such as vascular endothelial growth factor (VEGF), that facilitate the angiogenic response as part of tissue restoration. Then, in the later stages of tissue healing, capillary regression takes place. It is presently unknown whether macrophages play an antiangiogenic role in the final stages of tissue repair. Here, we examined whether soluble mediators secreted by pro-resolving CD11blow macrophages (Mres) inhibit angiogenesis in the context of the resolution of tissue repair. Our findings indicate that soluble mediators produced by ex vivo generated Mres (CM-Mres) attenuate angiogenesis in vitro by inhibiting human umbilical vein endothelial cell (HUVEC) proliferation by lowering their cyclin D1 expression. In addition, CM-Mres lowered HUVEC survival by inducing caspase 3/7 activation, and also inhibited VEGFR2 activation via VEGF. HUVEC migration and differentiation to tubular-like structure was also inhibited by CM-Mres. Similarly, CM-Mres significantly inhibited neovascularization as depicted ex vivo by utilizing the rat aorta ring assay and in vivo by utilizing the chick chorioallantoic membrane assay. Notably endostatin, which was shown previously to exert its antiangiogenic effect by inhibiting proliferation, survival, motility, and morphogenesis of endothelial cells via inhibition of VEGFR2 activation, is produced by Mres. Taken together, our results suggest that a specialized subset of macrophages that appear during the resolution of inflammation can produce antiangiogenic mediators, such as endostatin. These mediators can halt angiogenesis, thereby restoring tissue structure.


Assuntos
Macrófagos/metabolismo , Neovascularização Fisiológica/fisiologia , Cicatrização/fisiologia , Animais , Embrião de Galinha , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...